
Solution Sketches
CS@Mines High School Programming Competition 2023

Saturday, April 29th, 2023

Colorado School of Mines



Above Sea Level (Ryan Mapes)

Summary
Calculate the modified elevation of a particular point after the
sea level rises by 30 centimeters.

The solution is to read the input (which is given in meters) as a
floating point number, subtract 0.3, and output it.

You need to subtract because as the sea level rises, the
elevation of all objects on land decreases.

1



Driving Dilemma (Sumner Evans)

Summary
Will Rishi make it to the end of the intersection before
the light turns red given he is going at Smiles per hour?
He is D feet from the end of the intersection and he has T
seconds to get through the intersection.

For this problem, you need to determine if Rishi will travel at
least D feet in T seconds going at Smiles per hour.

You need to do some unit conversions in order to make this
comparison. It is recommended to convert the speed to feet
per second.

Then if T× S ≥ D Rishi “MADE IT” otherwise output “FAILED
TEST”.

2



Driving Dilemma (Sumner Evans)

Summary
Will Rishi make it to the end of the intersection before
the light turns red given he is going at Smiles per hour?
He is D feet from the end of the intersection and he has T
seconds to get through the intersection.

For this problem, you need to determine if Rishi will travel at
least D feet in T seconds going at Smiles per hour.

You need to do some unit conversions in order to make this
comparison. It is recommended to convert the speed to feet
per second.

Then if T× S ≥ D Rishi “MADE IT” otherwise output “FAILED
TEST”.

2



MIR Cipher (Ryan Manley)

Summary
Given a message, decode it by applying a Cæsar cipher to
each character with shift amount that doubles every
character.

For each character, shift it by the shift amount, print it, then
double the shift amount. Main gotchas:

1. The shift amount will quickly become greater than the
length of the alphabet so you will need to wrap around by
doing all operations under (mod 26).

2. You need to use 64-bit integer to store the shift amount!

It is recommended to subtract from the ASCII value of the
letters before performing the Cæsar cipher so that A is 0, B is
1, etc. This also allows the modular arithmetic work naturally. 3



MIR Cipher (Ryan Manley)

Summary
Given a message, decode it by applying a Cæsar cipher to
each character with shift amount that doubles every
character.

For each character, shift it by the shift amount, print it, then
double the shift amount. Main gotchas:

1. The shift amount will quickly become greater than the
length of the alphabet so you will need to wrap around by
doing all operations under (mod 26).

2. You need to use 64-bit integer to store the shift amount!

It is recommended to subtract from the ASCII value of the
letters before performing the Cæsar cipher so that A is 0, B is
1, etc. This also allows the modular arithmetic work naturally. 3



MIR Cipher (Ryan Manley)

Summary
Given a message, decode it by applying a Cæsar cipher to
each character with shift amount that doubles every
character.

For each character, shift it by the shift amount, print it, then
double the shift amount. Main gotchas:

1. The shift amount will quickly become greater than the
length of the alphabet so you will need to wrap around by
doing all operations under (mod 26).

2. You need to use 64-bit integer to store the shift amount!

It is recommended to subtract from the ASCII value of the
letters before performing the Cæsar cipher so that A is 0, B is
1, etc. This also allows the modular arithmetic work naturally. 3



MIR Cipher (Ryan Manley)

Summary
Given a message, decode it by applying a Cæsar cipher to
each character with shift amount that doubles every
character.

For each character, shift it by the shift amount, print it, then
double the shift amount. Main gotchas:

1. The shift amount will quickly become greater than the
length of the alphabet so you will need to wrap around by
doing all operations under (mod 26).

2. You need to use 64-bit integer to store the shift amount!

It is recommended to subtract from the ASCII value of the
letters before performing the Cæsar cipher so that A is 0, B is
1, etc. This also allows the modular arithmetic work naturally. 3



Sarah’s Sandwich Shop (Ethan Richards)

Summary
Given a word, determine what numbers on a standard
keypad would be used to represent that word.

You need to convert everything to lower case (or upper case),
then loop over all of the characters in the string and determine
the number corresponding to the letter.

One of the cleanest ways to accomplish this is by creating a
dictionary to store a mapping of letters to numbers.

Alternatively, you can just write 26 switch cases or if
statements.

4



Sarah’s Sandwich Shop (Ethan Richards)

Summary
Given a word, determine what numbers on a standard
keypad would be used to represent that word.

You need to convert everything to lower case (or upper case),
then loop over all of the characters in the string and determine
the number corresponding to the letter.

One of the cleanest ways to accomplish this is by creating a
dictionary to store a mapping of letters to numbers.

Alternatively, you can just write 26 switch cases or if
statements.

4



Mines Football (Ethan Richards)

Summary
Calculate the maximum and minimum number of points
scored across all games, and the maximum and minimum
total number of points scored in a month.

Store the current maximum score, current minimum score,
current maximum total month, and current minimum total
month (minimum values should be initialized to INT_MAX).

Loop through the scores for each month to sum up the scores
for the month. Use that to update the current minimum and
maximum total month scores.

Either in the same loop or in a separate loop, iterate through
each of the individual scores in the month and update the
current maximum and minimum scores. 5



Mines Football (Ethan Richards)

Summary
Calculate the maximum and minimum number of points
scored across all games, and the maximum and minimum
total number of points scored in a month.

Store the current maximum score, current minimum score,
current maximum total month, and current minimum total
month (minimum values should be initialized to INT_MAX).

Loop through the scores for each month to sum up the scores
for the month. Use that to update the current minimum and
maximum total month scores.

Either in the same loop or in a separate loop, iterate through
each of the individual scores in the month and update the
current maximum and minimum scores. 5



Mines Football (Ethan Richards)

Summary
Calculate the maximum and minimum number of points
scored across all games, and the maximum and minimum
total number of points scored in a month.

Store the current maximum score, current minimum score,
current maximum total month, and current minimum total
month (minimum values should be initialized to INT_MAX).

Loop through the scores for each month to sum up the scores
for the month. Use that to update the current minimum and
maximum total month scores.

Either in the same loop or in a separate loop, iterate through
each of the individual scores in the month and update the
current maximum and minimum scores. 5



Cookie Monster Concussion (Scott Enriquez)

Summary
Compute the output of an algorithm that determines if an
integer is divisble by nine.

The problem can be solved by implementing the algorithm
provided in the problem statement. It may have been useful to
interpret the input as a string of digits rather than an integer to
avoid overflow on 32-bit integers.

Note that running the provided algorithm on a number C is
equivalent to computing C mod 9, except that the algorithm
outputs 9 if C mod 9 = 0

6



Cookie Monster Concussion (Scott Enriquez)

Summary
Compute the output of an algorithm that determines if an
integer is divisble by nine.

The problem can be solved by implementing the algorithm
provided in the problem statement. It may have been useful to
interpret the input as a string of digits rather than an integer to
avoid overflow on 32-bit integers.

Note that running the provided algorithm on a number C is
equivalent to computing C mod 9, except that the algorithm
outputs 9 if C mod 9 = 0

6



Compass Rose (John Henke)

Summary
Given a list of headings in a generalized extended version of
the compass rose cardinal directions, determine the
corresponding degree values.

First, handle the special cases of due north/east/south/west.

Then, the easiest way to solve this is by dividing the problem
up per-quadrant.

You can determine which quadrant of the compass rose you
are dealing with looking at the last two characters of the
heading.

Once you know the quadrant, the preceeding characters
(going right to left) add specificity to the heading.

7



Compass Rose (John Henke)

Summary
Given a list of headings in a generalized extended version of
the compass rose cardinal directions, determine the
corresponding degree values.

First, handle the special cases of due north/east/south/west.

Then, the easiest way to solve this is by dividing the problem
up per-quadrant.

You can determine which quadrant of the compass rose you
are dealing with looking at the last two characters of the
heading.

Once you know the quadrant, the preceeding characters
(going right to left) add specificity to the heading.

7



Compass Rose: Adding Specificity to Headings

The most intuitive way to think about how each subsequent
preceeding character adds specificity is in terms of a binary
search.

Each character “pulls” the bounds towards that cardinal
direction.

For example, if you have the heading NE (45◦) it can be
thought of as the mid-point between 0◦ (N) and 90◦ (E).

If we prepend N to NE to get NNE, we “pull” the bounds
towards the north, and we get the mid-point between 0◦ (N)
and 45◦ (NE) which is 22.5◦.

There is no great way to do this entirely generically for all four
quadrants, and some amount of special-casing per quadrant
will be necessary. 8



Compass Rose: Adding Specificity to Headings

The most intuitive way to think about how each subsequent
preceeding character adds specificity is in terms of a binary
search.

Each character “pulls” the bounds towards that cardinal
direction.

For example, if you have the heading NE (45◦) it can be
thought of as the mid-point between 0◦ (N) and 90◦ (E).

If we prepend N to NE to get NNE, we “pull” the bounds
towards the north, and we get the mid-point between 0◦ (N)
and 45◦ (NE) which is 22.5◦.

There is no great way to do this entirely generically for all four
quadrants, and some amount of special-casing per quadrant
will be necessary. 8



Compass Rose: Adding Specificity to Headings

The most intuitive way to think about how each subsequent
preceeding character adds specificity is in terms of a binary
search.

Each character “pulls” the bounds towards that cardinal
direction.

For example, if you have the heading NE (45◦) it can be
thought of as the mid-point between 0◦ (N) and 90◦ (E).

If we prepend N to NE to get NNE, we “pull” the bounds
towards the north, and we get the mid-point between 0◦ (N)
and 45◦ (NE) which is 22.5◦.

There is no great way to do this entirely generically for all four
quadrants, and some amount of special-casing per quadrant
will be necessary. 8



Computer Imaging (Colin Siles)

Summary
Given many different flashdrives that can image computers
at different speeds, and the number of computers to image,
determine the minimum time to image all computers

It’s useful to think about this problem as a scheduling problem,
where computers are scheduled onto flash drives. The input
size for this problem is small enough that a greedy simulation
is fast enough.

• Keep track of the total amount of time each flash drive
images a computer (initially zero for each drive).

• For each computer we need to image, we determine
which flash drive it should be scheduled on.

9



Computer Imaging: Greedy Simulation

We choose the flash drive based by determining which one will
minimize the total time. To do this, we iterate over each
flash drive and consider the total time if we scheduled the next
computer on that flash drive.

We select the flash drive that resulted in the lowest total time
(choosing arbitrarily if multiple options yield the same
minimum time), and increment the total amount of time that
flash drive images a computer accordingly.

10



Computer Imaging: Final Steps

After we complete this procedure for each computer, the
maximum amount of time that any flash drive is imaging a
computer is the minimum amount of time it would take to
image all computers.

Scheduling any computer on a different flash drive would
necessarily increase the total time (or at least leave it
unchanged), per the nature of the greedy simulation.

If N is the number of computers, and M is the number of flash
drives, this solution is O(NM). This is fast enough since both N
and M are less than or equal to 1 000.

11



Computer Imaging: Final Steps

After we complete this procedure for each computer, the
maximum amount of time that any flash drive is imaging a
computer is the minimum amount of time it would take to
image all computers.

Scheduling any computer on a different flash drive would
necessarily increase the total time (or at least leave it
unchanged), per the nature of the greedy simulation.

If N is the number of computers, and M is the number of flash
drives, this solution is O(NM). This is fast enough since both N
and M are less than or equal to 1 000.

11



Computer Imaging: Alternative Solution

The problem can also be solved by doing a linear search of the
total time, starting from 0, to determine the smallest time
when the required number of computers are imaged. If there
are M flash drives, and the ith flash drive takes ti seconds to
image a computer, then the total number of computers that
can be imaged in T seconds is

M∑
i=1

⌊
T
ti

⌋
.

Note that there are more efficient solutions, which are
required for the more difficult form of this problem.

12



Planetary Computer Imaging (Colin Siles)

Summary
Given many different flash drives that image computers at
different speeds, and a very large number of computers to
image, determine the minimum time to image all computers.

In this version of the problem, the number of computers can
be very large (up to 8 · 109), so neither the greedy simulation
nor the linear search is fast enough.

We can use the same formula from the linear search solution
to determine how many computers are imaged in a given
amount of time, but use binary search to drastically reduce
the number of times we search, compared to linear search.

13



Planetary Computer Imaging (Colin Siles)

Summary
Given many different flash drives that image computers at
different speeds, and a very large number of computers to
image, determine the minimum time to image all computers.

In this version of the problem, the number of computers can
be very large (up to 8 · 109), so neither the greedy simulation
nor the linear search is fast enough.

We can use the same formula from the linear search solution
to determine how many computers are imaged in a given
amount of time, but use binary search to drastically reduce
the number of times we search, compared to linear search.

13



Planetary Computer Imaging: Binary Search

Since each step of binary search cuts the number of possible
candidates in half, we can determine the answer amongst the
2 · 1011 possible times in only log2(2 · 1011) ≈ 38 steps!

If we test a time and image more computers than necessary,
then we can eliminate all times greater than that value, since
all such times must necessarily image at least as many
computers.

If we test a time and image fewer computers than necessary,
then we can eliminate all times less than that value, since all
such times could only possibly image fewer computers.

14



Planetary Computer Imaging: Alternative Solution

A theroetically optimal schedule would be one where every
flash drive is being used throughout the entire process, and all
flash drives finish imaging the computers at the same time.
This is impossible to achieve in general since we cannot image
a computer with multiple flashdrives, but it lends a useful
insight.

Assuming we could partially image a computer, in time T, we
could image N =

∑
i
T
ti
computers. Rearranging, we obtain

T = N∑
i 1/ti

, where T is the “optimal” time to image N computers.

If we find the integer number of computers that can be imaged
by each flash drive in that time for the given input, we will only
need to schedule O(M) more computers. A greedy simulation
for those final computers would be O(M2), which is fast
enough. 15



Fixing Figures (Ethan Richards)

Summary
Convert a number to its textual representation.

The cleanest approach is to notice that the textual
representation of each set of 3-digits is the same, with an
added postfix for thousands/millions.

With this insight, you can solve printing for [0,999] and then
use that solution for the hundreds place, the thousands place,
and the millions place.

There are some highly annoying edge cases such as numbers
from [0,19].

There are also additional annoying cases such as double-digit
numbers with hyphens.

16



Fixing Figures (Ethan Richards)

Summary
Convert a number to its textual representation.

The cleanest approach is to notice that the textual
representation of each set of 3-digits is the same, with an
added postfix for thousands/millions.

With this insight, you can solve printing for [0,999] and then
use that solution for the hundreds place, the thousands place,
and the millions place.

There are some highly annoying edge cases such as numbers
from [0,19].

There are also additional annoying cases such as double-digit
numbers with hyphens.

16



Fixing Figures (Ethan Richards)

Summary
Convert a number to its textual representation.

The cleanest approach is to notice that the textual
representation of each set of 3-digits is the same, with an
added postfix for thousands/millions.

With this insight, you can solve printing for [0,999] and then
use that solution for the hundreds place, the thousands place,
and the millions place.

There are some highly annoying edge cases such as numbers
from [0,19].

There are also additional annoying cases such as double-digit
numbers with hyphens.

16



Paper Pile Pandemonium (Colin Siles)

Summary
Given the initial state of a series of stacks of paper, and a
record of how sheets of paper were moved between stacks,
determine the final state of the stacks

To solve this problem, simulate the provided sequence of
operations on the initial state of the stacks, and then output
the final state.

The simulation must keep the sheets in order when they were
moved between piles, and not reverse their order.

The size of the inputs is small enough that no special data
structures are required: dynamic arrays to represent each
stack is sufficient.

17



Noise Reduction (Sumner Evans)

Summary
Given a list of N temperature readings, find a group size such
that the difference of averages between sequential groups is
below a certain threshold, T.

The bounds of this problem are such that you can just try
every group size up to N/2+ 1 and see if the group size works.

In order to determine if a group size g works, split the dataset
into groups of size g (discarding any extraneous readings) and
compute the average of the readings within each group.

Keep track of the previous group’s average, and if the
difference is above T, then the group size is too small.

18



Noise Reduction (Sumner Evans)

Summary
Given a list of N temperature readings, find a group size such
that the difference of averages between sequential groups is
below a certain threshold, T.

The bounds of this problem are such that you can just try
every group size up to N/2+ 1 and see if the group size works.

In order to determine if a group size g works, split the dataset
into groups of size g (discarding any extraneous readings) and
compute the average of the readings within each group.

Keep track of the previous group’s average, and if the
difference is above T, then the group size is too small.

18



Telescope Targeting (Sam Sartor)

Summary
Given a W× H reference image and an N×M sky, determine
the rotation at which the reference image would be
centered in the sky.

To find where the reference image appears in the current view,
create 4 nested for loops:

1. Over M− H+ 1 possible vertical offsets
2. Over N−W+ 1 possible horizontal offsets
3. Over H rows of pixels in the reference image
4. Over W pixels in the row of the reference image

If all pixels in the reference image equal the pixels in the
current view, at the given offset, then the correct offset has
been found. 19



Telescope Targeting: Calculating Rotation

However, the offset itself is not the answer, we need to
calculate the rotation needed to center the reference image.

The horizontal rotation is horizontal offset− N−W
2

The vertical rotation is vertical offset− M−H
2

20



Wikipedia Black Hole (Sumner Evans)

Summary
Given a list of links between Wikipedia pages, determine the
smallest number of clicks it would take to get back to the
page you started on.

Model the problem as a directed graph with links being the
edges and pages being the nodes.

Because you need to output the smallest loop, you must use a
breadth-first search (BFS) to find the loop rather than a
depth-first search (DFS).

If you explore the entire graph without finding a loop back to
the original page, then there is “NO BLACK HOLE”.

21



Wikipedia Black Hole (Sumner Evans)

Summary
Given a list of links between Wikipedia pages, determine the
smallest number of clicks it would take to get back to the
page you started on.

Model the problem as a directed graph with links being the
edges and pages being the nodes.

Because you need to output the smallest loop, you must use a
breadth-first search (BFS) to find the loop rather than a
depth-first search (DFS).

If you explore the entire graph without finding a loop back to
the original page, then there is “NO BLACK HOLE”.

21



Unit Rescue (Alex Capehart)

Summary
Given a set of conversion factors between units, convert from
one unit to another unit. (There may not be a direct
conversion given.)

Model the problem as a directed graph with the nodes being
units and the edges being a known conversion from the two
units. Note that you will always have the reverse edge since
you can always invert the ratio.

Then, use BFS or DFS to find a path from the start unit to the
end unit. In addition to keeping track of which nodes to visit,
you will have to track the converted value (similar to a distance
table used in Dijkstra’s algorithm).

22



Unit Rescue (Alex Capehart)

Summary
Given a set of conversion factors between units, convert from
one unit to another unit. (There may not be a direct
conversion given.)

Model the problem as a directed graph with the nodes being
units and the edges being a known conversion from the two
units. Note that you will always have the reverse edge since
you can always invert the ratio.

Then, use BFS or DFS to find a path from the start unit to the
end unit. In addition to keeping track of which nodes to visit,
you will have to track the converted value (similar to a distance
table used in Dijkstra’s algorithm).

22



Basketball Modeling (Colin Siles)

Summary
Given a probabilistic model for how a basketball team scores
points, determine the expected value for the number of
points they will score.

This problem requires a solution technique called “Dynamic
Programming”, which allows us to efficiently solve problems
involving recursion.

Let f(n,m2,m3) be the expected number of points the team
scores over n posessions given that they begin with an m2

percent chance of making a 2-pointer, and an m3 percent
chance of making a 3-pointer. We define the function
recursively.

23



Basketball Modeling (Colin Siles)

Summary
Given a probabilistic model for how a basketball team scores
points, determine the expected value for the number of
points they will score.

This problem requires a solution technique called “Dynamic
Programming”, which allows us to efficiently solve problems
involving recursion.

Let f(n,m2,m3) be the expected number of points the team
scores over n posessions given that they begin with an m2

percent chance of making a 2-pointer, and an m3 percent
chance of making a 3-pointer. We define the function
recursively.

23



Basketball Modeling: Recursive Definition

For the base case, f(0,m2,m3) = 0 for all m2 and m3, because
there are no more posessions to score points.

For the recursive case, let C2 and C3 be the confidence
adjustments. There are five cases to consider.

If the team attempts and makes a 2-pointer, the expected
number of points scored is 2+ f(n− 1,min(m2 + C2,100),m3).
The team has scored 2 points, and we add the expected
number of points they score over the remaining possessions.

If the team attempts but misses a 2-pointer, the expected
number of points scored is 0+ f(n− 1,max(m2 − C2,0),m3).
The team did not score any points, but we add the expected
value of the rest of the possesssions.

24



Basketball Modeling: Recursive Definition

For the base case, f(0,m2,m3) = 0 for all m2 and m3, because
there are no more posessions to score points.

For the recursive case, let C2 and C3 be the confidence
adjustments. There are five cases to consider.

If the team attempts and makes a 2-pointer, the expected
number of points scored is 2+ f(n− 1,min(m2 + C2,100),m3).
The team has scored 2 points, and we add the expected
number of points they score over the remaining possessions.

If the team attempts but misses a 2-pointer, the expected
number of points scored is 0+ f(n− 1,max(m2 − C2,0),m3).
The team did not score any points, but we add the expected
value of the rest of the possesssions.

24



Basketball Modeling: Final Steps

The 3-pointers and no shot attempt cases follow a similar
pattern.

To complete the recursive definition, we multiply the expected
value of each case by the probability of that case occuring, and
sum those values up. The probability of attempting a 2-pointer
and making it is A2

100 · m2
100 , for example.

Computing this function with the recursive definition directly is
not fast enough. Because all of the inputs to f are integers, we
would repeat a lot of computations. If we “memoize” the
results to the function call (that is, cache the answer, and
check the cache before computing), we can solve the problem
efficiently. This memoization step is what advances us from
simple recursion to “Dynamic Programming”.

25



Basketball Modeling: Final Steps

The 3-pointers and no shot attempt cases follow a similar
pattern.

To complete the recursive definition, we multiply the expected
value of each case by the probability of that case occuring, and
sum those values up. The probability of attempting a 2-pointer
and making it is A2

100 · m2
100 , for example.

Computing this function with the recursive definition directly is
not fast enough. Because all of the inputs to f are integers, we
would repeat a lot of computations. If we “memoize” the
results to the function call (that is, cache the answer, and
check the cache before computing), we can solve the problem
efficiently. This memoization step is what advances us from
simple recursion to “Dynamic Programming”.

25



Pegs (Sumner Evans)

Summary
Given the state of a Peg Game, determine the number of
pegs that you would end up with after optimal play.

There are three main challenges to solve this problem:

1. Modelling the problem as a graph
2. Representing the state of the board in a comparable way.
3. Finding adjacencies to a given hole.

26



Pegs (Sumner Evans)

Summary
Given the state of a Peg Game, determine the number of
pegs that you would end up with after optimal play.

There are three main challenges to solve this problem:

1. Modelling the problem as a graph
2. Representing the state of the board in a comparable way.
3. Finding adjacencies to a given hole.

26



Pegs: Modelling

This problem requires that you model the possible moves
from a given position as edges in a directed graph. The nodes of
your graph represent a game state.

By modelling the problem in this way, you can use an
exhaustive search (either BFS or DFS work) to find the game
state with the smallest number of pegs remaining.

27



Pegs: Representing the board State

There are many ways to represent the state of the board, but
whichever way you choose, it must be hashable so that you
can put it into a “visited” set so you don’t get in an infinite loop.

Options include:

• Bitsets: there are only 15 pegs, so you can fit the entire
board state in a 32-bit integer (or even a 16-bit one).

• Tuples: if your language has tuples (say, Python), you can
use tuples of booleans.

• Custom class with hash function: you may have to
resort to this in languages such as Java.

28



Pegs: Representing the board State

There are many ways to represent the state of the board, but
whichever way you choose, it must be hashable so that you
can put it into a “visited” set so you don’t get in an infinite loop.

Options include:

• Bitsets: there are only 15 pegs, so you can fit the entire
board state in a 32-bit integer (or even a 16-bit one).

• Tuples: if your language has tuples (say, Python), you can
use tuples of booleans.

• Custom class with hash function: you may have to
resort to this in languages such as Java.

28



Pegs: Finding Adjacencies

Finding adjacencies to a given hole is nontrivial due to the
triangular nature of the board.

Given a hole in the (r, c) cell, it is adjacent to the holes at the
(r, c− 1), (r, c+ 1), (r− 1, c− 1), (r− 1, c), (r+ 1, c), and
(r+ 1, c+ 1).

There are many other ways to represent hexagonal grids. This
website has some good resources about options:
https://www.redblobgames.com/grids/hexagons/

29

https://www.redblobgames.com/grids/hexagons/


Pegs: Finding Adjacencies

Finding adjacencies to a given hole is nontrivial due to the
triangular nature of the board.

Given a hole in the (r, c) cell, it is adjacent to the holes at the
(r, c− 1), (r, c+ 1), (r− 1, c− 1), (r− 1, c), (r+ 1, c), and
(r+ 1, c+ 1).

There are many other ways to represent hexagonal grids. This
website has some good resources about options:
https://www.redblobgames.com/grids/hexagons/

29

https://www.redblobgames.com/grids/hexagons/


Galactic Reconstruction (Kelly Dance)

Summary
Given a starting set of n colonies, and a set of proposed warp
gates, determine which gates will be built, which are
unnecessary, and which are impossible to build due to lack of
funds.

This problem requires that we efficiently keep track of disjoint
subsets of the colonies.

This problem can be solved using the Union Find data
structure, but we will go over another solution that does not
require as much prerequisite knowledge.

30



Galactic Reconstruction: Set Merging Initialization

We will represent each cluster as a tuple of the set of colonies
within it and its wealth. We will also need a list that tracks with
cluster each colony is part of. So before we process any
propositions, we have these two structures:

clusters
[({1},w1), ({2},w2), ({3},3), . . .]

lookup
[1,2,3, . . .]

31



Galactic Reconstruction: Set Merging Proposition Process-
ing

We now process the propositions in order. If the current
proposition is joining a,b at at a cost of c, we can check
lookup[a] and lookup[b] to see which clusters they are part
of.

If they already belong to the same cluster then you can just
output that the warp gate is UNNECESSARY.

We can then check that each have enough wealth to build the
warp gate using clusters[lookup[a]][1] and
clusters[lookup[b]][1]. If either has wealth less than c,
then it is IMPOSSIBLE.

If both of these checks have passed, we output BUILT and
must update our data structures to reflect this change.

32



Galactic Reconstruction: Set Merging Proposition Process-
ing

We now process the propositions in order. If the current
proposition is joining a,b at at a cost of c, we can check
lookup[a] and lookup[b] to see which clusters they are part
of.

If they already belong to the same cluster then you can just
output that the warp gate is UNNECESSARY.

We can then check that each have enough wealth to build the
warp gate using clusters[lookup[a]][1] and
clusters[lookup[b]][1]. If either has wealth less than c,
then it is IMPOSSIBLE.

If both of these checks have passed, we output BUILT and
must update our data structures to reflect this change.

32



Galactic Reconstruction: Set Merging Data Structure Up-
dates

To update our data structures, we choose the smaller cluster
and move its elements into the larger cluster. Moving a colony
to the larger cluster requires that we

1. add the colony to the larger cluster

2. update the lookup table for each of the moved colonies

We must also update the wealth of the larger cluster, which
now represents their union, to be the sum of the original
wealths minus twice the warp gate cost.

33



Galactic Reconstruction: Set Merging Data Structure Up-
dates

To update our data structures, we choose the smaller cluster
and move its elements into the larger cluster. Moving a colony
to the larger cluster requires that we

1. add the colony to the larger cluster

2. update the lookup table for each of the moved colonies

We must also update the wealth of the larger cluster, which
now represents their union, to be the sum of the original
wealths minus twice the warp gate cost.

33



Galactic Reconstruction: Set Merging Complexity Analysis

This algorithm is O(n log n). The most expensive part of this
algorithm is moving colonies from one cluster to another.

We can derive our complexity by looking at how many times a
colony can move from one cluster to another then multiplying
that count by the number of colonies (n).

Since we are always moving a colony into a cluster with a size
greater than or equal to the size of the previous cluster, we
know that the size of the cluster a colony is part of at least
doubles after every move.

Since the size is doubling, we know that there can be at most
around log2(n) moves before there is only a single cluster.

34



Galactic Reconstruction: Set Merging Complexity Analysis

This algorithm is O(n log n). The most expensive part of this
algorithm is moving colonies from one cluster to another.

We can derive our complexity by looking at how many times a
colony can move from one cluster to another then multiplying
that count by the number of colonies (n).

Since we are always moving a colony into a cluster with a size
greater than or equal to the size of the previous cluster, we
know that the size of the cluster a colony is part of at least
doubles after every move.

Since the size is doubling, we know that there can be at most
around log2(n) moves before there is only a single cluster.

34



Galactic Reconstruction: Set Merging Complexity Analysis

This algorithm is O(n log n). The most expensive part of this
algorithm is moving colonies from one cluster to another.

We can derive our complexity by looking at how many times a
colony can move from one cluster to another then multiplying
that count by the number of colonies (n).

Since we are always moving a colony into a cluster with a size
greater than or equal to the size of the previous cluster, we
know that the size of the cluster a colony is part of at least
doubles after every move.

Since the size is doubling, we know that there can be at most
around log2(n) moves before there is only a single cluster.

34



Galactic Reconstruction: Set Merging Complexity Analysis

This algorithm is O(n log n). The most expensive part of this
algorithm is moving colonies from one cluster to another.

We can derive our complexity by looking at how many times a
colony can move from one cluster to another then multiplying
that count by the number of colonies (n).

Since we are always moving a colony into a cluster with a size
greater than or equal to the size of the previous cluster, we
know that the size of the cluster a colony is part of at least
doubles after every move.

Since the size is doubling, we know that there can be at most
around log2(n) moves before there is only a single cluster.

34


